министерство просвещения российской федерации

Министерство образования и науки Республики Татарстан

МУ "Отдел образования Исполнительного комитета Спасского

муниципального района Республики Татарстан"

МБОУ "Полянская СОШ"

РАССМОТРЕНО

Руководитель МО

Козлова Л.Н. Протокол №1 от «28» августа 2023 г. СОГЛАСОВАНО

Руководитель МС

V Лёвушкина Ю.В. Протокол №1 от «28» августа 2023 г. YTBEPK JEHO

Дироктор живсуз

Приказ Може БМ августа 2023 гам

РАБОЧАЯ ПРОГРАММА

внеурочной деятельности по химии

естественнонаучной направленности

«Занимательные опыты»

для обучающихся 7-9 классов

Срок реализации программы – 1 год

Программу составила: Черкасова Галина Николаевна учитель химии и биологии

Содержание

1.Комплекс основных характеристик программы

1.1. Пояснительная записка	3
1.2. Содержание программы	6
2. Комплекс организационно-педагогических усло	ЭВИЙ
2.1. Календарный учебный график	11
2.2. Условия реализации программы	16
2.3. Формы аттестации и оценочные	17
материалы	
2.4. Методические материалы	18
2.5.Список литературы	23
2.6.Приложения	24

1. Комплекс основных характеристик программы

1.1.Пояснительная записка

Программа внеурочной деятельности "Занимательные опыты" естественнонаучной направленности имеет прикладную направленность и служит для удовлетворения индивидуального интереса учащихся к изучению и применению знаний по химии в повседневной жизни.

Общая характеристика

Знания, получаемые в школе по химии, мы не очень часто используем в повседневной жизни, конечно, если мы не связали свою жизнь с химией в профессиональном плане. Тем не менее, этот предмет может стать источником знаний о процессах в окружающем мире, так как только при изучении химии мы знакомимся с составом веществ на нашей Земле. Благодаря этому мы узнаем, каким образом эти вещества влияют на процессы жизнедеятельности организма, да и в целом на саму жизнь человека, что полезно нам и в каких количествах и, наконец, что вредно и до какой степени.

Образовательная область программы

Предлагаемая программа имеет естественнонаучную направленность, которая является важным направлением в развитии и формировании у школьников первоначального целостного представления о мире на основе сообщения им некоторых химических знаний.

В процессе изучения данного курса учащиеся совершенствуют практические умения, способность ориентироваться мире разнообразных химических материалов, осознают практическую знаний, их общекультурное химических значение образованного человека.

Базовая основа программы:

Данная программа создана с создана с учетом нормативной базы федерального, муниципального и учрежденческого уровня, регламентирующих учебно - воспитательный процесс:

- Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (ст. 2, ст. 15, ст.16, ст.17, ст.75, ст. 79);
- Распоряжение Правительства РФ от 31.03.2022 № 678-р «Об утверждении Концепции развития дополнительного образования детей и признании утратившим силу Распоряжения Правительства РФ от 04.09.2014 № 1726-р» (вместе с «Концепцией развития дополнительного образования детей до 2030 года»).
- Приказ Министерства просвещения РФ от 27 июля 2022 г. № 629 "Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам",
 - Методические рекомендации по проектированию дополнительных общеразвивающих программ № 09-3242 от 18.11.2015 года;

- СП 2.4.3648-20 Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи;
- Нормативные документы, регулирующие использование электронного обучения и дистанционных технологий:
- Приказ Министерства образования и науки РФ от 23.08.2017 года № 816 «Порядок применения организациями, осуществляющих образовательную деятельность электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»
- «Методические рекомендации от 20 марта 2020 г. по реализации образовательных программ начального общего, основного общего, среднего образования, образовательных программ среднего профессионального образования и дополнительных общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий»;
- Локальные акты ОО (Устав, Положение о проектировании программ внеурочной деятельности в образовательной организации.

Направленность образовательной программы

Уровень освоения программы: стартовый

Направленность (профиль) программы: естественнонаучная

Актуальность программы

Введение внеурочной программы «Занимательные опыты» неизбежно изменит картину восприятия учащимися дисциплин естественнонаучного направления, переводя их из разряда умозрительных в разряд прикладных. Данная программа позволит сформировать у учащихся глубокий и устойчивый интерес к миру веществ и химических превращений, приобрести необходимые практические умения и навыки по практической химии

Педагогическая целесообразность

В ходе реализации происходит формирование и систематизация знаний, развитие творческих способностей, воспитание творческой личности. Дополнительность программы по отношению к программам общего образования заключается в её ориентированности на формирование практических умений и навыков разработки и выполнения химического эксперимента, навыков безопасного и грамотного обращения с веществами.

Воспитательный компонент

- дети приобретают социальный опыт и пробуют себя в социальных ролях;
- создаются условий для самореализации в деятельности (проектах), общении;
- в отношениях между детьми и взрослыми присутствует поддержка, внимание, забота, доверие;

- педагоги обращают внимание на то, на чем строится доверие у детей (забота, доброта, удивление);
- в системе отношений между детьми и взрослыми создаются условия социального творчества и сотворчества, освоения культурных норм и традиций;
- создаются условия бережного отношения к истории и традициям образовательного учреждения, города, страны.

Характеристика возрастной группы:

Психолого-возрастные особенности детей 13-15 возрастной период обусловлен переходом от детства к взрослости, что является главным смыслом этого этапа. Подростковый период считается «кризисным», такая оценка обусловлена многими качественными сдвигами в развитии подростка. Именно в этом возрасте происходят интенсивные и кардинальные изменения в организации ребенка на пути к биологической зрелости и полового созревания. Анатомо-физиологические сдвиги в психологические развитии подростка порождают новообразования: чувство взрослости, развитие интереса к противоположному полу, пробуждение определенных романтических чувств. Характерными новообразованиями подросткового возраста есть стремление самообразованию и самовоспитанию, полная определенность склонностей и профессиональных интересов.

Главное психологическое приобретение ранней юности открытие своего внутреннего мира, внутреннего «Я». Главным измерением времени в самосознании является будущее, к которому он (она) себя возрасте готовит. Ведущая деятельность В ЭТОМ **учебно**профессиональная, которой формируются процессе такие новообразования, как мировоззрение, профессиональные интересы, самосознание, мечта и идеалы.

Срок и условия реализации

Программа рассчитана на 1 год. Для успешного освоения программы занятия численность детей в группе должна составлять 10-16 человек. Годовой курс программы рассчитан на 36 часов (1 занятие по 1 ч. в неделю). Группа формируется из детей в возрасте 13- 15лет.

Программа кружка включает: знакомство с приёмами лабораторной техники, с организацией химического производства, изучение веществ и материалов и их применение.

Цели и задачи

Цель программы – является формирование у учащихся глубокого и устойчивого интереса к миру веществ и химических превращений, приобретение необходимых практических умений и навыков по лабораторному оборудованию.

Задачи программы:

Обучающие:

формирование навыков и умений научно-исследовательской деятельности;

формирование у учащихся навыков безопасного и грамотного обращения с веществами;

формирование практических умений и навыков разработки и выполнения химического эксперимента;

продолжить развитие познавательной активности, самостоятельности, настойчивости в достижении цели, креативных способностей учащихся;

продолжить формированиекоммуникативных умений;

формированиепрезентационных умений и навыков;

на примере химического материала начать развитие учебной

мотивации школьников на выбор профессии, связанной с химическим производством;

дать возможность учащимся проверить свои способности в естественнообразовательной области.

Развивающие:

- Развивать внимание, память, логическое и пространственное воображения.
- Развивать конструктивное мышление и сообразительность;
- Развивать логическое и критическое мышление.

Воспитательные:

- Вызвать интерес к изучаемому предмету
- Воспитывать усидчивость, умение преодолевать трудности.
- Сформировать информационную культуру.
- Сформировать потребность в дополнительной информации.
- Сформировать коммуникативные умения.
- Развивать мотивацию личности к познанию.
- Сформировать нравственные качества личности и культуру поведения в обществе

Методы обучения, используемые в программе (очная, электронное обучение и обучение с применением дистанционных образовательных технологий). рефераты, доклады, лекции, беседы, дискуссии, практические работы, викторины, игры, химический вечер и т.д.

Основные формы работы организации образовательного процесса являются:

Групповая - ориентирует обучающихся на создание «творческих пар», которые выполняют более сложные работы. Групповая форма позволяет ощутить помощь со стороны друг друга, учитывает возможности каждого, ориентирована на скорость и качество работы.

Групповая форма организации деятельности в конечном итоге приводит к разделению труда в «творческой паре», имитируя пооперационную работу над созданием какого-либо проекта. Здесь оттачиваются и совершенствуются уже конкретные профессиональные приемы, которые первоначально у обучающихся получались быстрее и (или) качественнее. В случае выполнения группового задания даётся возможность спланировать ход эксперимента с чётким распределением обязанностей для каждого члена группы.

Фронтальная- предполагает подачу учебного материала всему коллективу обучающихся детей через беседу или лекцию. Фронтальная форма способна создать коллектив единомышленников, способных воспринимать информацию и работать творчески вместе.

Индивидуальная -предполагает самостоятельную работу обучающихся, оказание помощи и консультации каждому из них со стороны педагога. Это позволяет, не уменьшая активности ребенка, содействовать выработке стремления и навыков самостоятельного творчества.

Индивидуальная форма формирует и оттачивает личностные качества обучающегося, а именно: трудолюбие, усидчивость, аккуратность, точность и четкость исполнения. Данная организационная форма позволяет готовить обучающихся к участию в конференциях и конкурсах.

Обучение по программе ведётся с использованием различных форм обучения (очная, электронное обучение и обучение с применением дистанционных образовательных технологий).

В зависимости от формы обучения необходимо выбрать подходящий по СанПиН режим занятий.

Режим занятий при очном обучении

Год обучени	Количество часов всего	Количество занятий в	Продолжительность занятий (часов)	Количество часов за неделю
Я		неделю		
1	36	1	1х40 мин	1

Режим занятий при дистанционном обучении

Год обучения	Количество часов всего	Количество занятий в неделю	Продолжительность занятий (часов)	Количество часов за неделю
1	36	1	1х30 мин	1

Планируемые результаты

Личностные: - умение работать в коллективе, в команде; - взаимопомощь, взаимовыручка; - слаженная работа в

коллективе и команде; - чувство уважения и бережного отношения к результатам своего труда и труду окружающих; - нравственные качества: отзывчивость, доброжелательность, честность, ответственность.

Метапредметные:

- развитие самостоятельной познавательной деятельности; коммуникативных навыков; памяти, внимания; волевых качеств: настойчивость, целеустремленность, усердие; - умение оценивать свою работу и работы членов коллектива; планировать свою деятельности и деятельность группы в ходе практических работ; аргументировано отстаивать свою точку зрения и представлять творческий проект.

Предметные: - знать правила техники безопасности при проведении химического эксперимента; - характеризовать методы химической науки (наблюдение, сравнение, эксперимент, измерение) и их роль в познании природы; - проводить химические опыты и эксперименты и объяснять их результаты; - использовать знания химии при соблюдении правил использования бытовых химических препаратов.

1.2. Содержание программы Учебный план

No	Тема	Коли	Количество часов		Формы	Оборудование
заня-тия		Всего	теория	практик а	аттестации/контроля	
1.	Знакомство с оборудова	анием				
1	Вводное занятие.	5	1		Вводный контроль	
2	Ознакомление с кабинетом химии и изучение правил техники безопасности		1		Тестирование	Набор посуды и принадлежносте й для ученического эксперимента, нагревательные приборы.
3	Знакомство с лабораторным оборудованием.			1	Устный опрос	Набор посуды и принадлежностей для ученического эксперимента, нагревательные приборы.

	T T			1		
4	Хранение материалов и реактивов в химической лаборатории.			1	Отчёт по практической работе	Набор посуды и принадлежностей для ученического эксперимента, нагревательные приборы.
5	Нагревательные приборы и пользование ими.			1	Отчёт по практической работе	нагревательные приборы. Датчик высокотемператур ный термопарный
2. Oci	новные приемы работы	с веш	ествам	И		
6	Взвешивание, фильтрование и очистка веществ.	10		1		Набор «Гидроксиды».
	Выпаривание и кристаллизация растворов.			1	практической работе	Набор «Сульфаты. Сульфиты. Сульфиды». Датчик температуры .
8-10	Основные приемы работы с твердыми, жидкими, газообразными веществами.		1	2	Отчёт по практической работе	1 1
	Лабораторные способы получения неорганических веществ		1	2	Отчёт по практической работе	Набор «Кислоты».
14- 15	Приготовление растворов вхимической лаборатории и вбыту.		1	1	Отчёт по практической работе	Набор посуды и принадлежностей для ученического эксперимента
3.3aı	нимательная химия			ı		•

	Итого	36	14	22		
32- 36	Химия в природе.		2	3	Публичное выступление	Набор посуды и принадлежностей для ученического эксперимента, нагревательные приборы.
28- 31	Проведение игр и конкурсов между членами кружка.		1	3	Отчёт по практическому заданию	
24- 27	Подготовка к декаде естественных наук.	13	2	2	Публичное выступление	Набор посуды и принадлежностей для ученического эксперимента, нагревательные приборы.
20- 23	Занимательные опыты по теме: «Химические реакции вокруг нас».		1	3	Отчет по практичес кой работе	Набор посуды и принадлежностей для ученического эксперимента, нагревательные приборы.
18- 19	Химия и медицина.		2		Публичное выступление	Датчики цифровой лаборатории Датчик -рн
16- 17	Кристаллогидраты	8	1	1	Отчёт по практической работе	Набор «Фосфаты. Силикаты» Набор «Индикаторы».

Содержание программы

- 1. Вводное занятие. Знакомство с учащимися, анкетирование. Выборы совета, девиза, эмблемы кружка, знакомства кружковцев с их обязанностями и оборудованием рабочего места, обсуждение и корректировка плана работы, предложенного учителем.
 - **2.** Ознакомление с кабинетом химии и изучение правил техники безопасности. Правила безопасной работы в кабинете химии, изучение правил техники безопасности и оказания первой помощи, использование противопожарных средств защиты.
- 3. Знакомство с лабораторным оборудованием. Ознакомление учащихся с классификацией и требованиями, предъявляемыми к хранению лабораторного оборудования, изучение технических средств обучения, предметов лабораторного оборудования. Техника демонстрации опытов (на примерах одного двух занимательных опытов). Свеча. История возникновения свечи. Аппарат Киппа, газометр. Вытяжной шкаф и его использование для проведения опытов.

Практическая работа. Ознакомление с техникой выполнения общих практических операций наливание жидкостей, перемешивание и растворение твердых веществ в воде.

4. Хранение материалов и реактивов в химической лаборатории. Знакомство с различными видами классификаций химических реактивов и правилами хранения их в лаборатории. Реактивы и их классы, хранение. Техника безопасности при работе в кабинете химии.

Практическая работа. Составление таблиц, отражающих классификацию веществ, изготовление этикеток неорганических веществ, составление списка реактивов, несовместимых для хранения.

5.Нагревательные приборы и пользование ими. Знакомство с правилами пользования нагревательных приборов: плитки, спиртовки, газовой горелки, водяной бани, сушильного шкафа. Нагревание и прокаливание.

Практическая работа. Использование нагревательных приборов. Изготовлениеспиртовки из подручного материала.

6.Взвешивание, фильтрование и перегонка. Ознакомление учащихся с приемами взвешивания и фильтрования, изучение процессов перегонки. Очистка веществ от примесей. Изучение устройства школьных портативных лабораторных весов. Правила работы с весами.

Практическая работа.

1. Изготовление простейших фильтров из подручных средств.

7.Выпаривание и кристаллизация

Способы выражения содержания веществ в растворах. Массовая и объемная доля растворенного вещества. Расчеты, связанные с использованием плотности растворов.

Разбавление и концентрирование растворов. Смешение и выпаривание растворов разного состава.

Практическая работа. Выделение растворённых веществ методом выпаривания и кристаллизации на примере раствора поваренной соли.

8. Основные приемы работы с твердыми, жидкими, газообразными веществами. Лабораторные способы получения неорганических веществ.

Демонстрация фильма. Оксиды. Глина, речной песок, углекислый газ Кислоты и работа с ними. Распознавание кислот и их свойства. Индикаторы.

Щёлочи и работа с ними. Свойства щелочей. Обнаружение щелочей и щелочесодержащих продуктов. Первая помощь при щелочных ожогах. Ядовитые вещества и работа с ними. Первая помощь при отравлении солями тяжёлых металлов. Осаждение тяжёлых ионов с помощью химических реактивов. Горючие вещества и смеси. Взрывчатые и горючие вещества. Опасные газовые смеси.

Практическая работа. Опыты, иллюстрирующие основные приёмы работы ствердыми, жидкими и газообразными веществами.

Практическая работа. Получение неорганических веществ в химической лаборатории Получение сульфата меди из меди, хлорида цинка из цинка.

Наглядные пособия, схемы, таблицы, плакаты.

9.Приготовление растворов в химической лаборатории и в быту. Ознакомление учащихся с процессом растворения веществ. Насыщенные и пересыщенные растворы. Приготовление растворов и использование их в жизни. Расчеты, связанные с использованием плотности растворов.

Разбавление и концентрирование растворов. Смешение растворов разного состава.

Практическая работа. Приготовление растворов веществ с определённой концентрацией растворённого вещества. Получение насыщенных и пересыщенных растворов, составление и использование графиков растворимости.

10. Кристаллоги драты. Кристаллическое состояние. Свойства кристаллов, строение и рост кристаллов.

Практическая работа. Получение кристаллов солей из водных

растворов методом медленного испарения и постепенного понижения температуры раствора (хлорид натрия, медный купорос, алюмокалиевые квасцы).

Домашние опыты по выращиванию кристаллов хлорида натрия, сахара.

11. Химия и медицина. Формирование информационной культуры учащихся. Составление и чтение докладов и рефератов.

Устиный журнал на тему химия и медицина. Лекарства и яды в древности. Антидоты. Антибиотики. Домашняя аптечка. Средства первой помощи. Аспирин и его свойства. Перекись водорода и её свойства. Перманганат калия и его свойства. Химические средства гигиены. Средства ухода за зубами: порошки, пасты, эликсиры для полости рта. Дезодоранты и антиперспиранты. Шампуни, кондиционеры и бальзамы для волос.

12.Занимательные опыты по теме: Химические реакции вокруг нас Признаки химических реакций.

Типы химических реакций в неорганической химии. Уравнения химических реакций. Закон сохранения массы веществ. Условия, влияющие на скорость реакции Генетическая связь между классами соединений.

Показ демонстрационных опытов:

- «Вулкан»на столе
- «Зелёный огонь»
- «Вода-катализатор»
- «Звездный дождь»
- «Разноцветное пламя» Вода зажигает бумагу

13.Подготовка к декаде естественных наук

«Химическая викторина». Подготовка учащихся к проведению неделе естественных наук. Изготовление плакатов с пословицами,

поговорками, афоризмами, выпуск стенгазет с занимательными фактами.

Химическая викторина

2. Проведение игр и конкурсов среди учащихся 8-9 классов членами кружка.

Составление кроссвордов, ребусов, проведение игр:

«Химическая эстафета»

«Третий лишний».

14. Химия в природе.

Сообщения учащимися о природных явлениях, сопровождающимися химическими процессами. Проведение занимательных опытов по теме « Химия в природе»

Демонстрация опытов:

- Химические водоросли
- Тёмно-серая змея.
- Оригинальное яйцо.
- Минеральный «хамелеон».

Химия и человек. Чтение докладов и рефератов.

- -Ваше питание и здоровье
- -Химические реакции внутри нас

Проведение дидактических игр

Проведение конкурсов и дидактических игр:

- кто внимательнее
- кто быстрее и лучше
- узнай вещество
- узнай явление

Химия в быту. Ознакомление учащихся с видами бытовых химикатов. Разновидности моющих средств. Использование химических материалов для ремонта квартир.

Практическая работа. Выведение пятен ржавчины, чернил, жира. Наглядные средства: плакаты, таблицы, образцы моющих средств.

Общий смотр знаний.

Подведение итогов и анализ работы за год. Отчет, демонстрация изготовленных членами кружка наглядных пособий, простейших приборов, конкурсных газет, выращенных кристаллов, рефератов и т.д.

2. Комплекс организационно-педагогических условий.

2.1. Календарный учебный график

Место проведения: МБОУ Полянская СОШ Время проведения занятий: Суббота 14:00-14:40

Изменения расписания занятий:

Nº	№ п/п	Тема занятий	Кол-во часов	Форма занятия	Форма контроля	Дата планируем ая (число, месяц)	Дата фактич еская (числ о, меся ц)	Причи на измене ния даты
1		Знакомство с оборудованием	5					
	1.1	Вводное занятие	1	Теория	Вводный контроль			
	1.2	Ознакомление с кабинетом химии и изучение правил техники безопасности	1	Теория	Устный опрос			
		Знакомство с лабораторным оборудованием. Практическая работа. Ознакомление с техникой выполнения общих практических операций наливание жидкостей, перемешивание и растворение твердых веществ в воде.	1	Практика	Тестирование			

	1.4	Хранение материалов иреактивов в химической лаборатории. Практическая работа. Составление таблиц, отражающих классификацию веществ, изготовление этикеток неорганических веществ, составление списка реактивов, несовместимых для хранения.	1	Практика	Отчёт по практической работе		
	1.5	Нагревательные приборы и пользование ими. Практическая работа. Использование нагревательных приборов. Изготовление спиртовки из подручного материала.	1	Практика	Отчёт по практической работе		
2		Основные приемыработы с веществами	10				
	2.1	Взвешивание, фильтрование иочистка веществ. <i>Практическая работа</i> . Изготовление простейших фильтров из подручных средств. Разделение неоднородных смесей.	1	Практика	Публичное выступление		
	2.2	Выпаривание и кристаллизация растворов. <i>Практическая работа</i> . Выделение растворённых веществ методом выпаривания и кристаллизации на примере раствора поваренной соли.	1	Практика	Отчёт по практической работе		
	2.3.	Основные приемы работы с твердыми, жидкими, газообразнымивеществами. Практическая работа. Опыты, иллюстрирующие основные приёмы работы с твердыми, жидкими и газообразными веществами.	3	Практика	Отчёт по практической работе		

						1		
	2.4.	Лабораторные способы получениянеорганических веществ <i>Практическая работа</i> . Получение неорганических веществ в химическойлаборатории Получение сульфата меди из меди, хлорида цинка из цинка.	3	Практика	Отчёт по практической работе			
	2.5.	Приготовление растворов вхимической лаборатории и вбыту. Практическая работа. Приготовление растворов веществ с определённой концентрацией растворённого вещества. Получение насыщенных и пересыщенных растворов, составление и использование графиков растворимости.	2	Практика	Отчёт по практической работе			
3		Занимательная химия	8					
	3.1.	Кристаллогидраты Практическая работа. Получение кристаллов солей из водных растворов методом медленного испарения и постепенного понижения температуры раствора (хлорид натрия, медный купорос, алюмокалиевые квасцы). Домашние опыты по выращиванию кристаллов хлорида натрия, сахара.	2	Практика	Отчёт по практической работе			

	3.2.	Химия и медицина. Составление и чтение докладов и рефератов. Устный журнал на тему химия и медицина	2	Семинар	Публичное выступление		
	3.3.	Занимательные опыты по теме: «Химические реакции вокруг нас». Показ демонстрационных опытов: «Вулкан»на столе «Зелёный огонь» «Вода-катализатор» «Звездный дождь» «Разноцветное пламя» Вода зажигает бумагу	4	Практика	Отчет по практической работе		
4		Химия и жизнь	13				
	4.1.	Подготовка к декаде естественных наук. Изготовление плакатов с пословицами, поговорками, афоризмами, выпуск стенгазет с занимательными фактами. Химическая викторина	4	Викорина	Публичное выступление		
	4.2.	Проведение игр иконкурсов между членами кружка. Составление кроссвордов, ребусов, проведение игр: «Химическая эстафета» «Третий лишний».	4	Семинар	Отчёт по практическому заданию		
	4.3.	Химия в природе. Чтение докладов и рефератов. Проведение конкурсов и дидактических игр. <i>Практическая работа</i> . Выведение пятен ржавчины, чернил, жира.	5	Практика	Публичное выступление		

2.2.УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ:

- Специализированный кабинет химии.
- 1.Информационно-коммуникативные средства

Компьютер.

Мультимедийный проектор.

Экран.

Сборник демонстрационных опытов для средней общеобразовательной школы.

Учебные диски: Химия – 9, Дмитрий Менделеев, Химия вокруг нас.

Учебное электронное издание: Химия (8-11 класс) - Виртуальная лаборатория.

2. Печатные пособия

2.1. Серия справочных таблиц по химии: «Периодическая система химических элементов Д.И. Менделеева», «Растворимость солей, кислот и оснований в воде», «Электрохимический ряд напряжений металлов», «Окраска индикаторов в различных средах».

- 3. Учебно-лабораторное оборудование
 - 3.1. Набор моделей кристаллических решёток: алмаза, графита, поваренной соли, железа.
 - 3.2. Коллекции: «Металлы и сплавы», «Минералы и горные породы», «Неметаллы».
 - 4. Учебно-практическое оборудование
 - 4.1. Набор «Кислоты».
 - 4.2. Набор «Гидроксиды».
 - 4.3. Набор «Оксиды металлов».
 - 4.4. Набор «Металлы».
 - 4.5. Набор «Щелочные и щелочноземельные металлы».
 - 4.6. Набор «Галогениды».
 - 4.7. Набор «Сульфаты. Сульфиты. Сульфиды».
 - 4.8. Набор «Карбонаты».
 - 4.9. Набор «Фосфаты. Силикаты»
 - 4.10. Набор «Индикаторы».
 - 4.11. Набор посуды и принадлежностей для ученического эксперимента, нагревательные приборы.

5.Сайты:

http://www.mon.gov.ru Министерство образования и науки http://www.fipi.ru Портал ФИПИ — Федеральный институт педагогических измерения http://edu.ru/index.php Федеральный портал «Российское образование» http://www.infomarker.ru/top8.html RUSTEST.RU - федеральный центр тестирования.

http://www.pedsovet.org_Всероссийский Интернет-Педсовет
http://www.alhimik.ru/ сайт «Алхимик»
http://www.xumuk.ru/ сайт о химии и для химиков.

Состав группы:

Группа обучающихся состоит из 10 человек. Данное количество обусловлено спецификой образовательного процесса.

К работе в объединении дети приступают после проведения руководителями соответствующего инструктажа по правилам техники безопасной работы с инструментом, приспособлениями и используемым оборудованием.

2.3. Формы аттестации (контроля) Критерии оценки результативности обучения:

- теоретической подготовки обучающихся: соответствие уровня теоретических знаний программным требованиям; широта кругозора; свобода восприятия теоретической информации; развитость практических навыков работы со специальной литературой, химическими реактивами и оборудованием, осмысленность и свобода использования специальной терминологии;
- практической подготовки обучающихся: соответствия уровня развития практических умений и навыков программным требованиям; свобода владения специальным оснащением; качество выполнения практического задания;
- развития обучающихся: культура организации практической деятельности; культура поведения; творческое отношение к выполнению практического задания; аккуратность и ответственность при работе;
- качество реализации и уровень проработанности проекта реализуемый обучающимися (в соответствии с возрастными особенностями).

Процесс обучения по дополнительной общеразвивающей программе предусматривает следующие формы диагностики аттестации:

- 1.Входная диагностика, проводится перед началом обучения и предназначена для выявления уровня подготовленности детей к усвоению программы. Формы контроля: Устный опрос, практическая работа.
- 2. Итоговая диагностика проводится после завершения всей учебной программы. Формы контроля: итоговое занятие защита докладов и рефератов.

Для отслеживания результативности реализации образовательной возможно использование систем мониторингового сопровождения образовательного процесса, определяющие основные формируемые y детей посредством реализации программы компетентностей: предметных, социальных и коммуникативных.

2.4. Методические материалы

Критерии и показатели, используемые при оценивании учебного реферата

№	Критерии	Показатели	Баллы
К1	Новизна реферированного текста Макс 6 баллов	- актуальность проблемы и темы; - новизна и самостоятельность в постановке проблемы, в формулировании нового аспекта выбранной для анализа проблемы; - наличие авторской позиции, самостоятельность суждений.	2 2 2
К2	Степень раскрытия сущности проблемы Макс 6 баллов	 соответствие плана теме реферата; соответствие содержания теме и плану реферата; полнота и глубина раскрытия основных понятий проблемы; обоснованность способов и методов работы с материалом; умение работать с литературой, систематизировать и структурировать материал; умение обобщать, сопоставлять различные точки зрения по рассматриваемому вопросу, аргументировать основные положения и выводы. 	1 1 1 1
К3	Обоснованность выбора источников Макс 2 балла	- круг, полнота использования литературных источников по проблеме; - привлечение новейших работ по проблеме (журнальные публикации, материалы сборников научных трудов и т.д.).	1
К4	Соблюдение требований к	- правильное оформление ссылок на используемую литературу;	1
	оформлению Макс. - 5 баллов	- грамотность и культура изложения; - владение терминологией и понятийным аппаратом проблемы;	1

		- соблюдение требований к объему реферата; - культура оформления: выделение абзацев.	1 1 1
К5	Грамотность Макс 3 балла	- отсутствие орфографических и синтаксических ошибок, стилистических погрешностей; - отсутствие опечаток, сокращений слов,	1
		кроме общепринятых; - литературный стиль.	1
		- компетентность и эрудированность докладчика (рассказ излагаемого материала, а не чтение с листа. При обсуждении проблемы и ответов на вопросы демонстрация осведомленности по теме)	1
	6.Защита реферата	-уровень предоставления доклада –	
К6	Макс 3 балла	умение находить контакт с аудиторией, свободно и грамотно изъясняться, умение пользоваться подручными средствами (стендовым материалом)	1
		-использование наглядно- иллюстративного материала, использование в ходе сообщения материалов, стендов – 2 балла	1

Оценивание реферата

Реферат оценивается по 24 балльной шкале, балы переводятся в оценкиуспеваемости следующим образом: баллы учитываются в процессе текущей оценки знаний программного материала. Критерии оценки докладов

- 21-24баллов «отлично»; 14-20 баллов – «хорошо»;
- 8-13 баллов «удовлетворительно;
- менее 8 баллов «неудовлетворительно».

Критерии и показатели, используемые при оценивании доклада

$N_{\underline{0}}$	Оцениваемые параметры	Оценка
Π/Π		В
		баллах
1.	Качество доклада:	
	- производит выдающееся впечатление, сопровождается	
	иллюстративным материалом;	3
	- четко выстроен;	2
	- рассказывается, но не объясняется суть работы;	1
	- зачитывается.	0
2.	Использование демонстрационного материала:	
	- автор представил демонстрационный материал и прекрасно в нем	
	ориентировался;	2
	- использовался в докладе, хорошо оформлен, но есть неточности;	1
	- представленный демонстрационный материал не использовался	
	докладчиком или был оформлен плохо, неграмотно.	0
3.	Качество ответов на вопросы:	
	- отвечает на вопросы;	3
	- не может ответить на большинство вопросов;	2
	- не может четко ответить на вопросы.	1
4.	Владение научным и специальным аппаратом:	
	- показано владение специальным аппаратом;	3
	- использованы общенаучные и специальные термины;	2
	- показано владение базовым аппаратом.	1

5	Четкость выводов:	
	- полностью характеризует работу;	3
	- нечетки;	2
	- имеются, но не доказаны.	1
	Итого:	14
		баллов

2.5. Список литературы

Рекомендованная литература для педагога

- 1. Ларина Н.С., Катанаева В.Г., Ларина Н.В. Практикум по химикоэкологическому мониторингу окружающей среды. Учебное пособие. Шадринск: Издательство ОГУП «Шадринский Дом Печати», 2007.
- 2. Малышкина В. Занимательная химия. Санкт-Петербург, «Тригон», 1998.
- 3. Оржековский П.А., Давыдов В.Н., Титов Н.А. Экспериментальные творческие задания и задачи по неорганической химии: Книга для учащихся М.: АРКТИ, 1998.
- 4. Стрельникова Л. Из чего всё сделано? Рассказы о веществе. Москва «Яуза-пресс», 2011.
- 5. Тяглова Е.В. Исследовательская деятельность учащихся по химии: методическое пособие М.: Глобус,2007.
- 6. Химия 9 класс. Сборник Элективных курсов. Составитель Ширшина Н.В. Волгоград. Учитель, 2008.
- 7. Химия вне рамок урока/Сост.И.А. Костенчук. М.: Центрхимпресс, 2008.

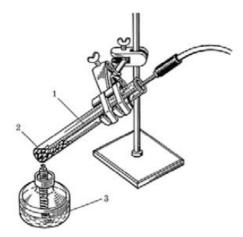
Рекомендованная литература для учащихся и родителей:

- 1. Леенсон И.А. Занимательная химия. М.: РОСМЭН, 1999.
- 2. Балаев И.И. Домашний эксперимент по химии.-М.: Просвещение 1977.
- 3. Гроссе Э., Вайсмантель X. Химия для любознательных. Л. Химия , 1978.
- 4. Г.И. Штремплер Химия на досуге М.: Просвещение 1993.
- 5. Ольгерт Ольгин Чудеса на выбор. Забавная химия для детей
- 6. Андрей Шляхов Химия на пальцах Издательство: АСТ

МОНИТОРИНГ РАЗВИТИЯ ОТДЕЛЬНЫХ ПАРАМЕТРОВ ЭМОЦИОНАЛЬНО - МОТИВАЦИОННОЙ СФЕРЫ

ЦЕЛЬ: Определение уровня развитости эмоционально-мотивационной сферы обучающихся.

МЕТОД: педагогическое наблюдение


Для диагностирования развития эмоционально-мотивационной сферы обучающихся были выбраны параметры «отношение к взаимодействию в коллективе» и «отношение к деятельности в объединении». Указанные параметры характеризуют особенности результата социализации обучающихся объединения.

**		
Уровень развития	Отношение к взаимодействию в	Отношение к деятельности в объединении
параметра	коллективе	
Низкий уровень	Не принимает участия в	Находится на занятиях без желания; не
	коллективной работе; пришел в	проявляет старательность, работу не
	объединение «за компанию», не	доводит до конца; берется за работу с
	может определиться – зачем ему	желанием, но не доводит до конца;
	это надо; присутствует больше	редко. Под влиянием внешних факторов
	как наблюдатель	проявляет интерес к деятельности
Средний	Стремится выделиться среди	Участвует в работе, пытается справиться
уровень	других; часто стремится к	с трудностями, но не всегда хватает для
	совместной деятельности ради	этого знаний и умений; работает
	общения с друзьями и (или)	добросовестно, ждет одобрения со
	самовыражения	стороны педагога; регулярно стремится
		к творческой деятельности, старается
		хорошо выполнить порученное дело
Высокий	Участвует в коллективной	Работает добросовестно, доводит работу
уровень	творческой деятельности, потому	до конца; любую работу выполняет
	что получает от этого	старательно и до конца, считает, что
	удовольствие; активно стремится	иначе нельзя; участвует в творческом
	к совместной работе, может	процессе, побуждаемый потребностью
	возглавить творческую группу и	к самореализации; ответственно
	обучать других	подходит к любой работе, проявляет
		творчество и изобретательность.

Практическая работа «Использование нагревательных приборов»

Теоретическая часть

При нагревании вещества в нём устанавливается тепловой баланс: скорость подвода тепла в какой-то момент становится равной скорости его рассеивания. Поскольку скорость подвода и скорость рассеивания зависят от разности температур между объектом и средой, то в состоянии теплового равновесия у вещества устанавливается определённая температура. Она заведомо ниже, чем температура пламени, за счёт рассеивания тепла.

Прибор для определения температуры плавления:

1 — термопарный датчик; 2 — песок; 3 — спиртовка

Практическая часть

Цель работы: продемонстрировать возможности спиртовки для нагревания веществ. Перечень датчиков цифровой лаборатории: датчик высокотемпературный термопарный.

Дополнительное оборудование: штатив с зажимом; спиртовка.

Материалы и реактивы: спирт этиловый, речной песок .

Техника безопасности:

- 1 . Работа связана с открытым пламенем берегитесь ожога!
- 2 . Термопара после извлечения из пламени остывает не сразу берегитесь ожога .
 - 3 . В спиртовке содержится горючая жидкость .
 - 4. Работать в очках.

Инструкция к выполнению:

- 1. В пробирку насыпьте песок на 2—3 см по высоте. Закрепите пробирку в лапке штатива, а термопарный датчик так, чтобы его кончик доходил почти до дна пробирки, но не касался ни дна, ни стенок (рис. 3). Отметьте температуру песка.
 - 2 . Зажгите спиртовку и поставьте её под пробирку с песком .

- 3 . Наблюдайте за изменением температуры, занося результаты измерений в табл.
- 4. Через некоторое время после начала нагревания температура стабилизируется. После этого остановите нагревание. Обратите внимание! Ставить нагретую пробирку в пластиковый штатив нельзя. Нужно дождаться его охлаждения в лапке штатива.

Результаты измерений/наблюдений

№	Температура	Температура	Температура песка	Температура
Π/Π	песка без	песка	через 4 мин	песка
	нагревания	через 2 мин		через 5—6 мин
1.				

Выводы:

В выводах указать, до какой максимальной температуры можно нагреть вещество в пробирке.

Контрольные вопросы:

- 1. До какой температуры удалось нагреть вещество?
- 2 . Почему температура, до которой удаётся нагреть вещество, ниже температуры пламени?

Лабораторный опыт.

«Измерение температуры кипения воды с помощью лабораторного термометра и датчика температуры»

Теоретическая часть

Данная работа позволяет школьникам экспериментально установить зависимость температуры кипения жидкости (в данном случае воды) от атмосферного давления, т .е . полнее реализовать межпредметные связи химии и физики .

Величины температуры кипения воды при различном давлении представлены в таблице 1.

<i>P</i> , кПа [*]	t, °C
5,0	32,88
10,0	45,82
15,0	53,98
20,0	60,07
25,0	64,98
30,0	69,11
35,0	72,70
40,0	75,88
45,0	78,74
50,0	81,34
55,0	83,73
60,0	85,95

<i>P</i> , кПа	t, °C
91,5	97, 17
92,0	97,32
92,5	97,47
93,0	97,62
93,5	97,76
94,0	97,91
94,5	98,06
95,0	98,21
95,5	98,35
96,0	98,50
96,5	98,64
97,0	98,78

<i>P</i> , кПа	t, °C
101,325	100,00
101,5	100,05
102,0	100,19
102,5	100,32
103,0	100,46
103,5	100,60
104,0	100,73
104,5	100,87
105,0	101,00
105,5	101,14
106,0	101,27
106,5	101,40

Таблица 1 . Температуры кипения воды при различном давлении P, кПа Практическая часть

Цель работы: продемонстрировать учащимся разницу между жидкостью и газом;

физическое свойство вещества: температуру кипения; ввести цифровой измеритель температуры в сравнении с аналоговым; дать представление о точности и погрешности прибора .

Перечень датчиков цифровой лаборатории: датчик температуры . Дополнительное оборудование: стакан химический (50 мл), термометр лаборатор-

ный; спиртовка; штатив лабораторный с кольцом и сеткой; манометр (можно использовать данные, полученные из Интернета).

Материалы и реактивы: спирт этиловый или сухое горючее; дистиллированная вода .

Техника безопасности:

- 1. Работать в очках.
- 2. Требуется соблюдать меры безопасности при нагревании пробирок, при работе со спиртовкой или сухим горючим.

Инструкция к выполнению:

- 1 . Налейте в стакан около 25 мл дистиллированной воды .
- 2 . Закрепите стакан в штативе .
- 3 . Опустите в воду термометр и датчик температуры, аккуратно закрепите их в лапке штатива . Не допускайте соприкосновения приборов между собой, стенками и дном стакана .
 - 4. Начните регистрацию измерений.
 - 5 . Нагрейте воду до кипения .

6. Когда показания приборов станут постоянными, занесите данные в таблицу.

Результаты измерений/наблюдений

Измерительный	Давление	Температура		Относительная
прибор	атмосферное	кипения воды,		ошибка
	Р, кПа			опыта,%
		Экспериментальная	Справочная	
Термометр				
Датчик				

Выводы:

Сделайте вывод о точности измерения приборов.

Контрольные вопросы

1. Задания для развития функциональной грамотности

При нулевой высоте над уровнем моря температура кипения воды 100 °C. Но с каждым подъёмом на 500 м температура кипения воды снижается на 2—3 °C. На высоте 1000 м вода закипит при температуре 96,7 °C. На уровне 2000 м ей для закипания нужны лишь 93,3 °C. Почему так происходит?

Практическая работа «Опыты, иллюстрирующие основные приёмы работы ствердыми, жидкими и газообразными веществами».

1. Демонстрационный эксперимент Жидкое вещество

Теоретическая часть

Водопроводная вода содержит растворённые соли, которые влияют на её свойства.

В частности, примеси солей обусловливают электропроводность водопроводной воды .

Дистиллированная вода не содержит солей, а значит, будет обладать меньшей электропроводностью. Таким образом, с помощью датчика электропроводности можно отличить дистиллированную воду от водопроводной.

Кроме физических методов анализа, можно использовать химические методы для определения воды. При действии различных реагентов соли в водопроводной воде дают специфические реакции, например помутнение.

Появление мути в воде обусловлено образованием нерастворимого в воде осадка . В дистиллированной воде нет солей . Поэтому помутнение не наблюдается .

При выпаривании водопроводной воды также можно наблюдать выделение

Практическая часть

солей.

Цель работы: сформировать у школьников представление, что свойства чистого и загрязнённого вещества различаются, и осознание того, что для опытов нужно

использовать дистиллированную воду . Сформировать навык определения объекта по его свойствам на основе обучающей выборки . При этом принцип работы датчика электропроводности понимать необязательно – достаточно увидеть различие показаний .

Перечень датчиков цифровой лаборатории: датчик электропроводности, цифровой микроскоп .

Дополнительное оборудование: химический стакан; спиртовка пробирки; штатив для пробирок; предметное стекло; пипетка; тигельные щипцы.

Материалы и реактивы: спирт этиловый или сухое горючее; 1%-ный раствор нитрата серебра; 1%-ный раствор хлорида бария.

В содержание

Техника безопасности:

- 1. Растворы нитрата серебра и хлорида бария требуют осторожного обращения.
- 2. При попадании на кожу рук смыть капли под струёй воды.

Инструкция к выполнению:

1. Определение вод с помощью датчика электропроводности.

В химический стакан налейте дистиллированную воду, погрузите в неё датчик электропроводности . Запишите значение в таблицу . Вылейте дистиллированную воду, налейте водопроводную и запишите значение электропроводности .

Результаты наблюдений/измерений:

Вода	Значение электропроводности
Дистилированная	
Водопроводная	

2 . Определение вод с помощью химических реактивов .

В одну пробирку налейте дистиллированную воду, в другую – водопроводную . В обе добавьте по 2—3 капли раствора нитрата серебра . Запишите наблюдения в таблицу . Обратите внимание на структуру осадка . То же самое проделайте с раствором хлорида бария .

Результаты измерений / наблюдений

Реактив	Дистиллированная вода	Водопроводная вода
Нитрат серебра		
Хлорид бария		

3 . Определение вод с помощью выпаривания .

На предметное стекло нанесите на некотором расстоянии по одной капле дистиллированной и водопроводной воды . Зажмите стекло в тигельных щипцах

. Осторожно нагрейте стекло, держа его высоко от пламени спиртовки .

Обратите внимание! Нельзя нагревать стекло в пламени . Под воздействием высокой температуры стекло лопнет .

Закончите нагревание стекла, когда вода полностью испариться. Что остаётся на стекле? Рассмотрите остаток на стекле с помощью микроскопа.

- 4. Экспериментальная задача:
- 1) В двух пронумерованных пробирках находится минеральная вода и водопровод-

ная вода. Как различить содержимое пробирок?

2) Составьте план определения вод и реализуйте его .

Выводы:

Указать, как можно различить дистиллированную воду и водопроводную.

Контрольные вопросы:

В химической лаборатории требуется приготовить раствор хлорида бария.

Какую воду необходимо взять и почему?

Задание для подготовки к ОГЭ.

В какой из перечисленных ниже групп находятся только смеси?

- 1) Азот, кислород, дистиллированная вода
- 2) Воздух, водопроводная вода, молоко
- 3) Нефть, золото, углекислый газ
- 4) Почва, медь, сера

В содержание

3. Задание для развития функциональной грамотности

Расположите пробы воды в порядке возрастания их солёности.

- А) Водопроводная вода
- Б) Дождевая вода
- В) Морская вода
- Г) Вода озера Баскунчак (или Мёртвого моря)

Запишите в таблицу получившуюся последовательность букв.

A	Б	В	Γ

2. <u>3.Демонстрационный эксперимент</u> Твёрдые вещества

Теоретическая часть

При изучении данной темы целесообразно создать проблемную ситуацию, для разрешения которой учащиеся выдвигают гипотезы, требующие эксперименталь-ной проверки.

При обсуждении предложенных вариантов проверки выдвинутых гипотез девятиклассники предлагают различные варианты конструкции приборов, т .е . проявляют творческую активность, в ходе которой происходит переосмысление приобретаемых знаний .

На уроке учащиеся узнают о работах М . В . Ломоносова и А . Лавуазье, посвящённых открытию закона сохранения массы веществ, формулируют закон,

приходят к выводу, что масса веществ в ходе реакции должна оставаться постоянной . Добившись понимания данного тезиса, учитель демонстрирует эксперимент .

Практическая часть

Цель работы: экспериментально доказать закон сохранения массы веществ. Дополнительное оборудование: весы технохимические или электронные; свеча; колба плоскодонная 250 мл; ложка для сжигания веществ.

Материалы и реактивы: свеча.

Техника безопасности: выполнять требования при работе с открытым пламенем . Инструкция к выполнению:

На рычажных или электронных весах уравновешивается свеча, а затем учитель зажигает её . Учащиеся наблюдают, что в течение ~1 мин равновесие весов нарушается, чашка с горящей свечой поднимается вверх . Учащимся задаются вопросы: «Как можно объяснить наблюдаемый факт? Как этот факт согласуется с законом сохранения массы веществ?» Обсуждение данных вопросов приводит учащихся к мысли о том, что эксперимент проведён некорректно, следует изменить конструкцию прибора .

Учитель заранее должен подготовить колбу достаточно большого объёма с хорошо

подогнанной пробкой, в которую вставлена ложечка . В ложечке закрепляется свеча .

Весь прибор в сборе заранее уравновешивается на весах (рис. 8). Когда учащиеся приходят к выводу, что опыт следует проводить в закрытом приборе, учитель достаёт весы с колбой, зажигает свечу, закреплённую в ложечке, вносит в колбу и плотно закрывает.

Учащиеся видят, что равновесие весов не нарушается в ходе всего эксперимента

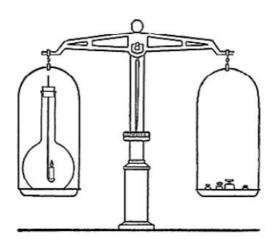


Рис.8 Прибор для демонстрации закона сохранения массы веществ. Выводы:

В выводах необходимо отразить тезис, что масса веществ при протекании химической реакции сохраняется .

Контрольные вопросы:

Задания для развития функциональной грамотности

- 1. При горении дров остаётся зола. Масса золы меньше массы взятых для сжигания дров. Как можно объяснить этот факт?
- 2 . Для приготовления мясного бульона повар взял кусок мяса массой $1~{\rm kr}$. После варки кусок мяса стал весить $800~{\rm r}$. Почему масса изменилась?

3. Демонстрационный эксперимент Газообразные вещества.

Теоретическая часть

Перед проведением эксперимента учащимся необходимо объяснить устройство прибора, что означают деления . Также необходимо убедиться, что пробка прибора герметично закрывает сосуд.

Практическая часть

Цель работы: экспериментально определить объёмную долю кислорода в воздухе .

Дополнительное оборудование: прибор для определения состава воздуха, штатив,

спиртовка, стеклянная палочка, лучина, стакан с водой.

Материалы и реактивы: красный фосфор.

Техника безопасности:

С осторожностью обращаться с горящим фосфором.

Инструкция к выполнению:

1. Кристаллизатор наполовину заполните водой. На поверхность воды поместите

фарфоровую чашку с 1—1,5 г сухого красного фосфора .

- 2. Обратите внимание на необходимое условие эксперимента влажный фосфор использовать нельзя! Фосфора должно быть взято больше, чем требуется для связывания всего кислорода, находящегося в сосуде.
- 3. Откройте пробку прибора и поместите колокол в кристаллизатор с водой. Погрузите колокол в воду настолько, чтобы уровень воды совпадал с нижним делением колокола. При этом нижний край колокола не должен доходить до дна кристаллизатора. Для этого колокол закрепите в штативе или поместите на дно кристаллизатора две стеклянные палочки.
- 4. Сильно разогрев конец стеклянной палочки, опустите её в колокол и подожгите

фосфор. Как только фосфор загорелся, быстро извлеките палочку и закройте колокол пробкой . Колокол заполняется густым белым дымом, состоящим из частичек фосфорного ангидрида .

5. При горении фосфора объём воздуха внутри колокола вначале от нагревания не-

много увеличивается, а уровень воды в колоколе понижается. По мере расходования кислорода пламя постепенно гаснет. Белый фосфорный ангидрид растворяется в воде. Сосуд охлаждается, газ в колоколе постепенно уменьшается в объёме. Уровень воды в колоколе повышается.

В кристаллизатор долейте воды в таком объеме, чтобы внутри и снаружи колокола уровни были одинаковы и совпадали со вторым делением колокола .

6. Откройте прибор и при помощи горящей лучины убедитесь в том, что оставшийся в колоколе газ не поддерживает горения.

Результаты наблюдений

Число делений в приборе,	Число делений в приборе,	Какой газ прореагировал?
заполненных воздухом	заполненных газами	
(до проведения реакции)	(после проведения	
	реакции)	

Выводы:

В выводах указать содержание кислорода в воздухе (в %).

Контрольные вопросы:

- 1. Какой газ расходуется при сжигании фосфора в воздухе?
- 2. Какой объём кислорода в воздухе? Сколько это составляет в процентах?
- 3 . Почему для проведения эксперимента берут избыток фосфора?
- 4 . Какой газ остался в колоколе после сгорания фосфора?
- 5. Задания для подготовки к ГИА, ВПР

Укажите, в какую группу входят вещества, загрязняющие воздух:

- 1) водяной пар, углекислый газ
- 2) сернистый газ, оксиды азота
- 3) кислород, азот
- 4) гелий, кислород.

Теоретическая часть

При проведении этой работы можно использовать традиционную методику, описанную в учебниках . И лишь на этапе выпаривания раствора сульфата меди (II) провести её по предлагаемой методике .

Данный вариант проведения традиционной практической работы связан с образованием кристаллов CuSO $4 \cdot 5H\ 2\ O$, выделяющихся из насыщенного раствора, и наблюдением их под микроскопом

Такой подход позволяет сэкономить время, так как для опыта берут меньшее количество кислоты, не проводят фильтрование и выпаривание . Не следу-

ет добиваться полного растворения оксида меди (II), который отделяется от маточного раствора отстаиванием . Жидкость сливают в другую пробирку или гнездо пластины для проведения капельных реакций . Из насыщенного раствора выпадают мелкие кристаллы медного купороса . По форме кристаллов продукт реакции идентифицируется гораздо надёжнее, чем просто по цвету раствора .

Практическая часть

Цель работы: показать школьникам реакцию оксида с кислотой с чёткой идентификацией одного из продуктов реакции.

Дополнительное оборудование: цифровой микроскоп; предметное стекло; две про-

бирки; пластина с гнёздами для проведения капельных реакций (белого цвета); держатель для пробирки; пипетка; спиртовка.

Материалы и реактивы: оксид меди (II), полученный разложением основного карбоната меди, 20 %-ный раствор серной кислоты .

Техника безопасности:

- 1. Работать в очках.
- 2. Соблюдать меры безопасности при нагревании пробирок, работе со спиртовкой

или сухим горючим, работе с кислотами.

Инструкция к выполнению:

- 1 . В пробирку поместите \sim 100 мг оксида меди (II) (неполную ложечку-дозатор) и прилейте \sim 1 мл раствора серной кислоты .
- 2. Содержимое пробирки нагрейте, не доводя до кипения. Обратите внимание на то, что кипятить смесь не рекомендуется. Дождитесь, пока большая часть оксида медирастворится.
- 3. Дайте смеси отстояться 1 минуту, после чего поместите каплю раствора на предметное стекло и наблюдайте за ростом кристаллов с помощью микроскопа.
- 4 . В рабочих тетрадях зарисуйте форму кристаллов медного купороса.
- 5. Остаток горячего раствора слейте с избытка оксида меди (II) в другую пробирку.

Через некоторое время наблюдайте выделение кристаллов кристаллогидрата сульфата меди (II) .

Результаты наблюдений

№	Что делали?	Что наблюдали?	Уравнение реакции
1			
2			

Выводы:

В выводах нужно отразить химическое свойство кислот — взаимодействие с основными оксидами, а также возможность определять вещества по форме кристаллов.

Контрольные вопросы:

- 1. Какую окраску приобретает раствор при растворении CuO в серной кислоте?
- 2. Чем обусловлена данная окраска?
- 3. Какое вещество выделяется из раствора после реакции?

Практическая работа «Выделение растворённых веществ методом выпаривания и кристаллизации на примере раствора поваренной соли»

Теоретическая часть

Всякий раствор состоит из растворённого вещества и растворителя .

Растворимость

большинства твёрдых веществ в воде при повышении температуры увеличивается. Однако некоторые вещества не подчиняются этому правилу. Есть группа веществ, растворимость которых при изменении температуры мало изменяется, а есть и такие, растворимость которых с повышением температуры падает.

В качестве объектов исследования целесообразно взять хлориды калия и натрия, а также гидроксид кальция. Зависимость растворимости данных веществ от температуры

представлена в таблице 3.

Растворимость безводных веществ в 100 г воды при данной температуре, в граммах

Температура в	KCl	NaCl	Ca(OH) ²
°C			
20	34,0	36,0	0,165
40	40,0	36,6	0,141
60	45,5	37,3	0,116
80	51,1	38,4	0,094

Для проведения опыта лучше брать мелкоизмельчённые кристаллы хлоридов калия и натрия. Насыщенный раствор гидроксида кальция готовится за несколько дней до проведения опыта. Для этого в большую склянку насыпают сухой гидроксид кальция слоем 1 см и заливают дистиллированной водой почти до пробки. Изредка взбалтывают смесь.

По мере расходования насыщенного раствора в склянку доливают воду .

Практическая часть

Цель работы: определить растворимость веществ при различной температуре. Перечень датчиков цифровой лаборатории: датчик температуры платиновый. Дополнительное оборудование: 2 стакана на 150 мл; пробирка; вата; шпатель; сте-

клянная палочка с резиновым кольцом; спиртовка или электрическая плитка; промывалка .

Материалы и реактивы: дистиллированная вода; кристаллические хлориды калия и

натрия, известковая вода.

Техника безопасности:

При проведении данного эксперимента используется нагревательный прибор — берегись ожога!

Инструкция к выполнению:

Опыт 1

- 1. В первый стакан налейте около 30 мл дистиллированной воды. Используя температурный датчик, определите температуру воды в стакане. Зафиксируйте то значение температуры, которое устанавливается после стабилизации показаний прибора.
- 2. Небольшими порциями добавляйте в воду кристаллический хлорид калия и перемешивайте раствор стеклянной палочкой. Когда соль перестанет растворяться в воде, вы получите насыщенный раствор хлорида калия при данной температуре. На дне стакана должно оставаться немного нерастворённой соли.
- 3. Нагрейте полученный раствор до 50.
- 4. Что происходит с кристаллами соли, оставшимися от предыдущего прибавления

соли? Вновь прибавьте порцию соли .

Опыт 2

Во второй стакан налейте 30 мл воды и приготовьте насыщенный раствор хлорида натрия при комнатной температуре . Нагрейте раствор, повысив его температуру примерно на 20 °C . Если кристаллы, находящиеся на дне стакана растворились, добавьте ещё немного хлорида натрия . Тщательно перемешивайте раствор .

Растворились ли кристаллы соли?

Опыт 3

1 . В пробирку налейте примерно 3 мл насыщенного раствора гидроксида кальция

(известковой воды) и опустите в неё датчик температуры . Чтобы раствор не поглощал углекислый газ из воздуха, закройте пробирку рыхлым ватным тампоном . Осторожно нагрейте раствор, повысив его температуру примерно на $10\ ^{\circ}\mathrm{C}$.

2. Что происходит с раствором? Доведите раствор до кипения. Как изменяется мутность раствора?

- 3. Охладите раствор. Что происходит с образовавшимся осадком (как изменяется интенсивность помутнения раствора)?
- 4. Сделайте вывод о влиянии температуры на растворимость гидроксида кальция в

воде.

Результаты наблюдений/измерений

Вещество	Влияние температуры на растворимость(растворимость	
	повышается, понижается, остаётся постоянной	
Хлорид калия		
Хлорид натрия		
Гидроксид		
кальция		

Выводы:

Указать влияние температуры на растворимость различных веществ в воде . Контрольные вопросы:

- 1. Дополните предложения, вставив вместо пробела название соответствующего вещества.
- 1) На растворимость в воде (укажите название вещества) температура не оказывает значительного влияния .
- 2) С повышением температуры растворимость в воде (укажите название вещества) увеличивается .
- 3) С понижением температуры растворимость в воде (укажите название вещества) увеличивается .
- 4) Сравните полученные выводы со справочными данными .
- 2 . Задания для развития функциональной грамотности

В заливе Кара-Богаз-Гол Каспийского моря находятся богатейшие запасы минерала

мирабилита – кристаллогидрата сульфата натрия.

Каждый год в конце ноября, когда температура воды падает до 6 °С, мирабилит начинает выделяться в виде бесцветных кристаллов, оседающих на дно залива и на его берегах . Объясните причины выпадения кристаллов соли .

Практическая работа «Получение кристаллов солей из водных растворов методом медленного испарения и постепенного понижения температуры раствора»

Теоретическая часть

Растворимость большинства солей зависит от температуры . При охлаждении раствора, насыщенного при высокой температуре, из него выпадают кристаллы соли .

В зависимости от состава, вещество может выделяться в виде безводной соли или

кристаллогидрата . Так, например, при охлаждении насыщенного раствора сульфата цинка выделяется кристаллогидрат ZnSO $4\cdot 7H 2$ O . Другое название этого кристаллогидрата — цинковый купорос . Форма кристаллов этого вещества отличается от кристаллов медного купороса .

Практическая часть

Цель работы – сформировать у школьников представление о зависимости раство-

римости от температуры и о кристаллизации вещества из раствора.

Сформировать навык работы с цифровым микроскопом.

Дополнительное оборудование: цифровой микроскоп; предметное стекло; пробирка; держатель для пробирки; пипетка; спиртовка.

Материалы и реактивы: сульфат цинка Zn SO 4 · 7H 2 O.

Техника безопасности:

- 1. Работать в защитных очках. Требуются соблюдение мер безопасности при использовании спиртовки, сухого горючего.
- 2. Избегать попадания концентрированного раствора сульфата цинка на кожу и одежду.

Инструкция к выполнению:

- 1. В пробирку налейте воду (на 1—2 см по высоте).
- 2. Медленно при перемешивании добавляйте сульфат цинка до тех пор, пока он не

перестанет растворяться.

- 3. Пробирку с раствором сульфата цинка нагрейте до полного растворения кристаллов сульфата цинка.
- 4. Также аккуратно нагрейте предметное стекло, пронося его несколько раз через

пламя.

- 5. Когда сульфат цинка растворится, нанесите каплю раствора на тёплое предметное стекло и поместите стекло под микроскоп.
- 6. При охлаждении раствора из него выделяются красивые кристаллы кристаллогидрата сульфата цинка цинкового купороса.
- 7 . Зарисуйте кристаллы вещества в рабочих тетрадях .

Результаты наблюдений

No	Что делали?	Что наблюдали ?	
1			

Выводы:

Отразить, как зависит растворимость вещества в воде от температуры .

Контрольные вопросы:

- 1. Как зависит растворимость сульфата цинка от температуры?
- 2. Какое вещество выделяется из раствора после реакции?
- 3. Сравните форму кристаллов медного купороса и цинкового купороса. Различаются ли они по форме кристаллов?
- 4. Задания для развития функциональной грамотности Объясните, какие этапы эксперимента изображены на рисунке 9. Какая связь существует между этими изображениями и фотографией, приведённой рядом?

Рис. 9. Процесс кристаллизации

Лабораторный опыт «Пересыщенный раствор»

Теоретическая часть

Растворимость вещества ограничена . Насыщенным по веществу A называют такой

раствор, при добавлении к которому новой порции вещества А оно не растворяется. Если при добавлении вещества А оно растворяется, то такой раствор называется ненасыщенным . Если же при добавлении к раствору вещества А выпадают дополнительные кристаллы этого вещества, то такой раствор называется пересыщенным .

Рис. 10. Пример пересыщенного раствора . Мёртвое море Пересыщенный раствор можно приготовить несколькими способами:

- 1) изменить температуру насыщенного раствора;
- 2) удалить у насыщенного раствора часть растворителя.

Пересыщенные растворы нестабильны, и при внесении затравки (кристаллика вещества или просто небольшого угловатого тела) из них выпадает растворённое вещество. Раствор превращается в насыщенный.

Практическая часть

Цель работы: сформировать представление о тепловом эффекте процесса растворе-

ния и кристаллизации, а также понятие «пересыщенный раствор» .

Перечень датчиков цифровой лаборатории: датчик температуры .

Дополнительное оборудование: химический стакан (100—150 мл) с холодной водой,

пробирка, пробирка мерная, штатив с лапкой, спиртовка.

Материалы и реактивы: спирт этиловый, кристаллический тиосульфат натрия $(Na_2S_2O_3\cdot 5H\, 2O)\;.$

Техника безопасности: соблюдать правила обращения с открытым пламенем . Инструкция к выполнению:

- 1. В пробирку насыпьте 5 г тиосульфата натрия.
- 2. Измерьте температуру соли и воды с помощью датчика.
- 3. Прилейте 2 мл воды к соли. Опустите датчик температуры в полученную смесь. Перемешивайте смесь до тех пор, пока температура не стабилизируется.
 - 4. После того как температура перестала изменяться, извлеките датчик из раствора
- 5. Закрепите пробирку в лапке штатива и осторожно нагревайте пробирку до полного растворения соли, перемешивая раствор датчиком температуры. После этого прекратите нагревание и оставьте датчик в растворе.

6. Дождитесь охлаждения раствора до комнатной температуры (можно подставить

под пробирку стакан с холодной водой).

- 7. Обратите внимание! Пересыщенные растворы могут быть стабильными очень долгое время. Но от внешнего воздействия (перемешивания, попадания пыли или кристалла соли) раствор быстро закристаллизовывается.
- 8. Если раствор не закристаллизуется, извлеките из него датчик и прикоснитесь им

к кристалликам тиосульфата натрия так, чтобы 1—2 кристалла прилипли к датчику. Погрузите датчик с прилипшим кристаллом в раствор . Что происходит с содержимым пробирки и как изменяется его температура? Что наблюдается? Как меняется температура раствора?

9. Зафиксируйте наибольшее показание датчика. Занесите данные в таблицу. Результаты измерений/наблюдений

Номер	Исследуемая система/ измерение	Температура °C
измерения	температуры	
1	Чистая вода до начала опыта	
2	Раствор тиосульфата натрия в	
	воде (до нагревания)	
3	Охлаждённый пересыщенный	
	раствор N2S2O3	
4	Раствор тиосульфата после	
	кристаллизации	

Выводы:

Отразить, какие процессы (экзотермические или эндотермические) протекают при

растворении и кристаллизации соли.

Контрольные вопросы:

- 1. Какой процесс (эндотермический или экзотермический) преобладает при растворении кристаллогидрата тиосульфата натрия в воде?
- 2. Какой процесс (эндотермический или экзотермический) преобладает при кристаллизации тиосульфата натрия из раствора?
- 3. На сколько градусов удалось переохладить насыщенный раствор тиосульфата натрия, чтобы он стал пересыщенным?
- 4. Задание для развития функциональной грамотности.

В быту иногда в качестве согревающего средства используют «химическую грелку». Чаще всего это герметичный прозрачный пакет с жидкостью . Чтобы активировать грелку

нужно перегнуть пластину-пускатель, которая находится внутри пакета . Содержимое пакета заполняется кристаллами .

Для восстановления грелки её кладут в кипящую воду до полного растворения кри-

сталлов. После охлаждения грелка готова к работе. На каком этапе работы грелки выделяется тепло?

Лабораторный опыт «Определение рН растворов кислот и щелочей»

Теоретическая часть

Так как учащиеся на уроках математики ещё не изучали логарифмы, то приходится отказаться от введения понятия «логарифм» . Это можно сделать в 11 классе, после того как ученики изучат данный материал .

На первом этапе девятиклассникам следует объяснить, что величина рН характеризует, насколько среда раствора кислая или щелочная . В чистой воде и в нейтральных растворах значение рН равно 7 . В растворах кислот рН меньше 7 . Если рН находится в интервале 5—7, то среда раствора считается слабокислотной, если рН меньше 5, то сильнокислотной: чем сильнее кислота, тем ниже значение рН .

В растворах со щелочной средой показатель pH больше 7 . Раствор считается слабощелочным при pH от 7 до 9 и сильнощелочным при pH больше 9 . Значения водородного показателя (pH) водных растворов распространённых веществ обычно находятся в интервале от 1 до 13 . Приближённо оценить pH растворов можно с помощью кислотно-основных индикаторов . Для более точного измерения водородного показателя используют приборы — pH-метры .

Практическая часть

Цель работы: сформировать представление о рН как о характеристике кислотности среды. Ввести ассоциативную связь между цифровым значением рН и соответствующим аналоговым сигналом: цветом индикатора.

Перечень датчиков цифровой лаборатории: датчик рН.

Дополнительное оборудование: штатив с зажимом, пять химических стаканов (25 мл),пробирки, промывалка с дистиллированной водой.

Материалы и реактивы: 0,1М растворы HCl, HNO 3, NaOH, Ca(OH) 2 (насыщенный раствор), растворы индикаторов: лакмуса, метилового оранжевого, фенолфталеина; универсальная индикаторная бумага; фильтровальная бумага.

Техника безопасности:

- 1. Работать в очках.
- 2. Соблюдать меры безопасности при работе со щелочами и разбавленными кислотами.

Чувствительный элемент датчика pH — стеклянный шарик в его нижней части . Он

очень хрупкий, поэтому не следует касаться им любых твёрдых поверхностей или ронять.

Датчик желательно закреплять в штативе.

Инструкция к выполнению:

- 1. Закрепите датчик рН в лапке штатива. В первый стакан налейте соляную кислоту. Погрузите электрод в раствор, не менее чем на 3 см. Когда показания прибора стабилизируются, запишите значение рН в таблицу результатов измерений
- 2 . Разделите раствор кислоты по трём пробиркам и добавьте к ним по 1—2 капли индикатора. Запишите наблюдения .
- 3. Нанесите стеклянной палочкой каплю раствора на универсальную индикаторную бумагу. Запишите наблюдения.
- 4. Палочку протрите фильтровальной бумагой.
- 5 . Тщательно ополосните датчик pH из промывалки над стаканчиком для слива . Повторите тот же эксперимент с другими растворами (сначала с NaOH, далее с

 $Ca(OH)\ 2$, потом — с кислотами, потом — с водопроводной водой).

6. Возьмите пробу с неизвестным раствором и выясните, какая в ней среда. Для этого испытайте её, как сочтёте нужным, запишите, что наблюдали и что из этого следует.

Результаты измерений/наблюдений

Исследуемый	HCl	HNO3	Водопро-	NaOH	Ca(OH)2
раствор НС1			водная во-		
HNO 3			да		
Среда	Кисло	тная	Нейтральная	Осно	вная
Значение рН по					
датчику					
Цвет лакмуса					
Цвет					
метилового					
оранжевого					
Цвет					
фенолфталеина					
Цвет					
универсального					
индикатора					

Выводы:

Указать, как можно определить среду раствора.

Контрольные вопросы:

- 1. Что общего в формулах веществ, дающих кислотную среду?
- 2. Что общего в формулах веществ, дающих основную среду?
- 3 . Задание для развития функциональной грамотности

рН кожи и волос здорового человека составляет примерно 5 (смотри шкалу) . Для мытья волос Таня использует нейтральный шампунь с рН в пределах 6—8 .

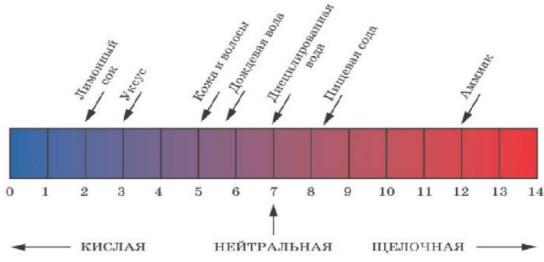


Рис. 13. Шкала рН среды

Какую жидкость может использовать Таня в качестве ополаскивателя волос после мытья головы, если она хочет поддержать естественный рН волос?

- 1) Дистиллированную воду.
- 2) Дождевую воду.
- 3) Слабый раствор пищевой соды.
- 4) Слабый раствор лимонного сока.

Лабораторный опыт. «Определение рН в разных средах»

Теоретическая часть

В чистой воде и в нейтральных растворах значение рН равно 7,0 . Если из-за малых

примесей (в первую очередь растворённого углекислого газа и аммиака) в дистиллированной воде в лаборатории рН может колебаться от 6,0 до 8,0, то среду с этим диапазоном рН считают нейтральной . Чем меньше рН, тем среда кислее . рН концентрированных кислот примерно равен -1 . Чем рН больше, тем среда осно́внее . В концентрированных растворах щелочей рН около 14,0 . В кислотах 0,1 моль/л рН $\approx 1,0$, в щелочах той же концентрации рН $\approx 13,0$.

Практическая часть

Цель работы: сформировать представление о шкале рН.

Перечень датчиков цифровой лаборатории: датчик рН.

Дополнительное оборудование: штатив с зажимом; пять химических стаканов (25 мл); промывалка .

Материалы и реактивы: универсальная индикаторная бумага, 0,1М растворы хлороводорода HCl и гидроксида натрия NaOH, водопроводная вода, соки, минеральная вода, растворы стиральных порошков, экстракты чая и кофе.

Техника безопасности:

- 1. Работать в очках.
- 2. Специальные меры безопасности при работе со щелочами и разбавленными кис-

лотами.

3 . Чувствительный элемент датчика pH — стеклянный шарик в его нижней части . Он очень хрупкий, поэтому не следует касаться им любых твёрдых поверхностей или ронять .

Инструкция к выполнению:

- 1. Закрепите датчик рН в лапке штатива.
- 2. В стакан налейте соляную кислоту.
- 3. Погрузите электрод в раствор, не менее чем на 3 см. Когда показания прибора стабилизируются, запишите значение рН в отчёт.
- 4. Поместите в этот раствор кусочек универсальной индикаторной бумаги и оцените
- значение рН по его окраске . Сравните показания датчика рН и индикаторной бумаги .
- 5. Тщательно ополосните стакан и датчик pH дистиллированной водой из промывалки и погрузите его в раствор гидроксида натрия NaOH. Запишите значение pH в результаты измерений. Поместите в раствор кусочек индикаторной бумаги и оцените значение pH по его окраске. Сравните показания
- 6. Проведите измерения рН остальных растворов.

Результаты измерений/наблюдений

<u> </u>	1	
Исследуемый раствор	Значение рН по датчику	Значение рН по
		универсальному
		индикатору

Выводы:

Отразить возможности определения кислотности среды с помощью индикатора и датчика pH .

Контрольные вопросы:

- 1. В каком из исследуемых растворов самая высокая концентрация кислоты?
- 2. Какие растворы, применяемые в быту, имеют щелочную реакцию среды?
- 3. В каких растворах близкое значение водородного показателя?
- 4. Задания для развития функциональной грамотности
- 1) Метеослужба города зафиксировала выпадение дождевых осадков с pH = 2,5. Какую окраску примут известные вам индикаторы в такой дождевой воде?
- 2) Ученик решил исследовать раствор стирального порошка с помощью лакмуса. Однако выбранный индикатор незначительно изменил свою окраску . Как иначе проверить, какая среда в исследуемом растворе?
- 3) Как будет изменяться значение рН насыщенного водного раствора углекислого газа при нагревании? Почему?
- 4) Хозяйки давно приметили и используют свойство свекольного отвара . Чтобы борщ был ярко-красным, в него перед окончанием варки добавляют немного пищевой кислоты уксусной или лимонной . Цвет меняется буквально на глазах . Объясните это явление.